page contents

Brain-derived neurotrophic factor (BDNF) is a growth factor found abundantly in the brain and is known to play a key role in neuronal cell survival, synaptic plasticity and synaptogenesis (Wrann, 2013). Particularly relevant is its function in the hippocampus which is an area of the brain responsible for learning and development, therefore, studies have looked into the association of cognitive abilities and BDNF plasma or serum levels (Zoladz, 2010).

It has been shown that higher levels of plasma or serum BDNF correlates with good brain function, positive mood and better memory performance which has led to studies looking at how BDNF levels are increased (Gomez-Pinilla, 2013). Of interest is the exercise induced increase of BDNF expression which has been consistently found in rodent studies and now human studies are beginning to replicate findings (Zoladz, 2010).

For example, a year-long study of 120 older adults split into two groups of aerobic exercise and stretching (control group) measured and compared the hippocampal volume, BDNF levels and memory function between the groups. It was found that those in the aerobic group had a 2% increase in hippocampal volume by the end of the study. This was correlated with increased BDNF levels and also better memory performance (Erickson KI, 2011).

Of further interest is the finding of a BDNF polymorphism Val66Met which has been associated with poorer cognitive function and memory (Zoladz, 2010). A study with a relatively impressive sample size of 205 elderly participants looked at the influence of the Met polymorphism on physical activity and memory. As expected, it was found that the Met polymorphism was associated with a significantly decreased performance of episodic memory (Canivet, 2015).

This is relevant to practitioners as we begin to understand more of why exercise is beneficial to the brain and general health. In terms of reducing the risk of cognitive diseases such as; dementia and Alzheimer’s as well as improving mood and well-being for those on a weight-reduction plan, it may be that regular exercise helps to maintain good levels of BDNF expression and therefore improve cognitive performance.

Therefore, exercise is for more than just losing weight or for those wanting to improve their fitness levels, it has benefits that go way further in terms of gene expression and longevity hence practice daily. Brisk walk anyone?

The Genovive team

 

References

Canivet, A. A.-B. (2015). Effects of BDNF polymorphism and physical activity on episodic memory in the elderly: a cross sectional study. European Review of Aging and Physical Activity, 12: 15.

Erickson KI, V. M. (2011). Exercise training increases size of hippocampus and improves memory . Proceedings of the National Academy of Sciences of the United States of America, 108(7):301-3022.

Gomez-Pinilla, F. H. (2013). The Influence of Exercise on Cognitive Abilities. Comprehensive Physiology, 3(1)403-428.

Wrann, C. D.-B. (2013). Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metabolism, 18(5):649-659.

Zoladz, J. A. (2010). THE EFFECT OF PHYSICAL ACTIVITY ON THE BRAIN DERIVED NEUROTROPHIC FACTOR: FROM ANIMAL TO HUMAN STUDIES. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 61(5): 533-541.